Школа электрика


Контроллер заряда для солнечной батареи

Содержание:

  1. Основные функции и работа контроллера
  2. Простейшие контроллеры типа Откл/Вкл (или On/Off)
  3. Контроллеры для аккумуляторов типа PWM
  4. Устройства МРРТ
  5. Порядок подключения контроллеров PWM
  6. Порядок подключения устройств МРРТ
  7. Видео

Хозяева загородных коттеджей все чаще используют комплекты гелиосистем, как один из альтернативных источников электрической энергии. В ее состав входят фотоэлектрические элементы, аккумуляторная батарея, контроллер заряда солнечной батареи, инвертор и другое оборудование. Данные системы могут работать автономно или вместе с основными электрическими сетями. Во всех случаях аккумулятор накапливает заряд, а потом отдает его потребителям, когда это необходимо.

Контроллер обслуживает аккумуляторную батарею, не допуская ее перезарядки или чрезмерного разряда. Известны различные типы и модификации данных устройств, применяемых в условиях того или иного места эксплуатации. Для того чтобы сделать наиболее оптимальный выбор контроллера, нужно знать его конструктивные особенности и принцип работы.

Основные функции и работа контроллера

Устройство, контролирующее заряд, можно смело назвать одним из основных компонентов солнечных электростанций. Конструктивно, он является прибором электронного типа, функционирующим на основе специального чипа. Данный чип осуществляет контроль над действием всей системы, а его первоочередная задача состоит в управлении процессом зарядки аккумуляторной батареи. Таким образом, предотвращается избыточный ток или полный разряд аккумулятора.

Когда степень заряженности выходит на максимальный уровень, подача электричества от солнечных фотоэлементов сокращается и опускается до уровня, обеспечивающего компенсацию саморазряда. В случае сильной разрядки контроллер автоматически отключает батарею от нагрузки. После того как уровень заряда оказывается восстановлен, нагрузка снова подключается к источнику тока.

Электрическая энергия, выработанная солнечными батареями, может передаваться на аккумулятор по разным схемам. Один из способов предусматривает прямую передачу тока, без каких-либо коммутационных и регулирующих устройств. В результате такой подачи, напряжение на клеммах станет постепенно расти, и в конце концов оно достигнет определенного уровня, в зависимости от конструкции АКБ и температуры окружающей среды. То есть, на начальной стадии зарядки такая схема полностью себя оправдывает.

Однако, после того как заряд превысит рекомендуемое значение, в батарее возникают негативные процессы. Ток, продолжающий поступать, приводит к росту напряжения и последующей перезарядке. Из-за этого нагрев электролита резко увеличивается, после чего он закипает и начинается интенсивный выброс дистиллированной воды, превратившейся в пар. В некоторых случаях емкости могут полностью высохнуть, что приводит к резкому снижению ресурса аккумулятора.

Во избежание подобных ситуаций зарядный ток ограничивается с помощью контроллеров. Эту операцию можно выполнять вручную, однако такой способ требует постоянного контроля напряжения по приборам и своевременного переключения. Поэтому в реальных условиях он практически не используется, поскольку существует автоматика.

Для ограничения тока используются разные контроллеры – от простых до более сложных. Условно они разделяются на следующие типы:

  • Приборы, где применяется схема обычного включения-отключения в зависимости от состояния напряжения на клеммах АКБ.
  • Устройства, использующие широтно-импульсные преобразования (ШИМ).
  • Контроллеры заряда солнечной батареи, сканирующий точки с максимальной мощностью (МРРТ).

Каждое из этих устройств следует рассмотреть более подробно, чтобы в дальнейшем не ошибиться и правильно выбрать нужный.

Простейшие контроллеры типа Откл/Вкл (или On/Off)

Аппараты данного вида относятся к самым простым и, как следствие, они считаются самыми дешевыми. При получении аккумулятором предельного заряда, специальное реле осуществляет разрыв цепи и ток от солнечной панели прекращает свое поступление. Фактически, во многих случаях батарея оказывается заряженной не до конца, что отрицательно сказывается на ее последующей работоспособности. В связи с этим, такие регуляторы нежелательно применять в качественных системах.

Контроллеры для солнечных батарей типа включения-отключения обладает крайне ограниченной функциональностью. Хотя он и предотвращает перегрев и перезарядку батареи, тем не менее, полного заряда не обеспечивает. Ток может достичь максимального значения и это вызовет отключение, однако сам заряд АКБ в этот момент составляет всего лишь 70-90%, то есть является неполным.

Подобное состояние также отрицательно сказывается на общей функциональности батареи и постепенно приводит к снижению эксплуатационного ресурса. В таких ситуациях для полноценной зарядки дополнительно требуется не менее 3-4 часов.

Контроллеры для аккумуляторов типа PWM

Более технологичным и эффективным считаются контроллеры заряда аккумулятора от солнечной батареи типа PWM, сокращенное название которого получилось от Pulse-Width Modulation. В переводе на русский язык данное устройство относится к категории ШИМ, то есть в его работе используется широтно-импульсная модуляция тока.

Основной функцией прибора является устранение проблем, возникающих при неполной зарядке. Полного уровня удается достичь благодаря возможности понижения тока, когда он достигает максимального значения. Зарядка становится более продолжительной, но и эффект от нее значительно выше.

Работа контроллера осуществляется следующим образом. Перед входом в прибор электрический ток попадает в стабилизирующий компонент и резистивную разделительную цепочку. На этом участке потенциалы входного напряжения выравниваются, обеспечивая тем самым защиту самого контроллера. В разных моделях граничное входное напряжение может отличаться.

Далее в работу включаются силовые транзисторы, ограничивающие ток и напряжение до установленных значений. Они находятся под управлением чипа, использующего микросхему драйвера. После этого выходное напряжение транзисторов приобретает нормальные параметры, подходящие для зарядки аккумулятора. Данная схема дополняется температурным датчиком и драйвером. Последний компонент воздействует на силовой транзистор, выполняющий регулировку мощности подключенной нагрузки.

Таким образом, АКБ оказывается защищенной от глубокой разрядки. Температурный датчик контролирует степень нагрева наиболее важных деталей контроллера. В случае повышения температуры более чем это установлено в настройках, происходит автоматическое отключение всех цепочек активного питания. В результате, батарея поддерживается в хорошем состоянии, а срок ее эксплуатации значительно увеличивается.

Устройства МРРТ

Наиболее эффективными и стабильными считаются контроллеры для солнечной батареи модификации МРРТ – Maximum Power Point Tracking. Данные устройства осуществляют слежение за мощностью заряда по достижении максимального предела. В этом процессе используются сложные алгоритмы контроля показаний напряжения и тока, устанавливается наиболее оптимальное соотношение характеристик, обеспечивающих максимальную эффективность солнечной системы.

В процессе эксплуатации практически установлено, что контроллер для солнечных батарей mppt является более совершенным и существенно отличается от других моделей. По сравнению с приборами PWM, он эффективнее примерно на 35%, соответственно на столько же продуктивнее получается и сама система.

Более высокое качество и надежность таких устройств достигается за счет сложной схемы, дополненной компонентами, обеспечивающими тщательный контроль в соответствии с условиями эксплуатации. Специальные схемы выполняют слежение и сравнение уровней тока и напряжения, после чего определяется максимальная выходная мощность.

Главной особенностью контроллеров МРРТ является способность настройки солнечной панели на максимальную мощность вне зависимости от погоды в данный момент. Таким образом, батарея работает более эффективно и обеспечивает необходимый заряд АКБ.

Порядок подключения контроллеров PWM

Общим условием подключения, обязательным для всех контроллеров, является их соответствие используемым солнечным фотоэлементам. Если прибор должен работать с входным напряжением 100 вольт, то на выходе панели оно не должно превышать этого значения.

Перед подключением контрольной аппаратуры необходимо выбрать место установки. Помещение должно быть сухим, с хорошей вентиляцией, из него нужно заранее убрать все пожароопасные материалы, а также ликвидировать причины влажности, излишней теплоты и вибраций. Обеспечивается защита от прямого ультрафиолетового излучения и негативных воздействий окружающей среды.

При подключении в общую схему контроллеров PWM необходимо точное соблюдение последовательности операций, а все периферийные устройства соединяются через свои контактные клеммы:

  • Клеммы АКБ соединяются с клеммами прибора с соблюдением полярности.
  • В месте контакта с положительным проводником выполняется установка защитного предохранителя.
  • Далее подключаются солнечные панели так же с соблюдением полярности проводов и клемм.
  • Правильность подключений проверяется контрольной лампой на 12 или 24 В, подключенной к выводам нагрузки.

Порядок действий должен обязательно соблюдаться. Например, ни в коем случае нельзя подключать солнечные панели к контроллеру, не подключенному к аккумулятору. В этом случае напряжение не найдет выхода и прибор может сгореть. Инвертор не должен подключаться к контроллеру через клеммы нагрузки, а соединяться напрямую с клеммами АКБ.

Порядок подключения устройств МРРТ

Подключение контроллеров МРРТ в целом выполняется так же, как и в других устройств. Существуют некоторые отличия в технологии, связанные с повышенной мощностью такой аппаратуры. В связи с этим потребуется кабель для силового подключения, способный выдерживать плотность тока минимум 4 А/мм2. Если МРРТ контроллер рассчитан на ток 60 А, то сечение кабеля, подключаемого к АКБ, составит не менее 20 мм2.

На концах соединительных кабелей должны быть установлены медные наконечники, обжатые как можно плотнее. К отрицательным клеммам АКБ и солнечной панели подключаются переходники с выключателями и предохранителями. Это позволит снизить потери электроэнергии и обеспечить безопасность в процессе эксплуатации.

Все подключения к прибору МРРТ осуществляются в следующем порядке:

  • Выключатели в переходниках АКБ и панели устанавливаются в отключенное положение.
  • Далее производится извлечение защитных предохранителей.
  • Клеммы контроллера, предназначенные для АКБ, соединяются кабелем с клеммами аккумулятора.
  • К соответствующим клеммам контроллера подключаются выходные провода от солнечной батареи.
  • Клемма заземления прибора соединяется с заземляющей шиной.
  • В соответствии с инструкцией на контроллере устанавливается датчик температуры.

По завершении всех операций предохранитель АКБ вставляется на свое место, а выключатель переводится во включенное положение. На дисплее контрольного устройства должен появиться сигнал о том, что аккумулятор обнаружен. Через небольшой промежуток времени те же операции проделываются с предохранителем и выключателем солнечной панели. На экране прибора появится значение ее напряжения, что означает успешный запуск в работу всей энергетической установки.



Ремонт люминесцентных ламп своими рук...
Электростанция на солнечных батареях
Цвет провода - какой что обозначает
Резервное электроснабжение

Альтернативные источники энергии
Ремонт квартир
Ремонт квартир в Москве
Электро схемы

***
Услуги электрика в Москве и области. Электромонтаж квартир и домов. тел. +7 909 926 36 83

Electric-220.ru © Copyright 2011 - 2019
 
Вход | Реклама | ВакансииКонфиденциальность
X