Каждая электрическая цепь в общих чертах представляет собой источник тока с подключенной нагрузкой, обладающей каким-то сопротивлением. Получается своеобразный контур, по которому протекает электрический ток. Однако, под влиянием различных факторов, две разные точки этого контура начинают контактировать между собой, что и приводит к короткому замыканию.
Короткое замыкание при постоянном и переменном токе
На практике причиной КЗ может послужить любой токопроводящий предмет. Его сопротивление по сравнению с нагрузкой будет во много раз ниже, поэтому вся сила тока короткого замыкания устремляется именно с это место. Ее значение стремительно повышается, что вызывает мгновенный нагрев проводов до температуры плавления, после чего они перегорают. Толстые проводники расплавляются медленнее, и за это время они успевают воспламенить все горючие элементы, расположенные поблизости.
Как уже отмечалось, сопротивление нагрузки при коротком замыкании будет стремиться к нулю. В соответствии с законом Ома, сила тока, при этом, будет увеличиваться в сторону бесконечности. На практике такого бесконечного роста не получится, поскольку существует ограничение, вызванное сопротивлением источника тока. Тем не менее, сила тока короткого замыкания будет достаточно высокой, чтобы разогреть проводник. В этом случае рассматривается квадратичная зависимость, когда при увеличении тока в 10 раз, выделение тепла увеличится в 100 раз. Именно в этом и состоит главная опасность данного явления, приводящего к пожарам.
Под действием высокого тока проводники раскаляются и отдают тепловую энергию окружающим предметам и конструкциям. В случае соприкосновения фазного и нулевого проводников – источник тока замыкается коротко сам на себя. Как правило, возгорание начинается с изоляции, пришедшей в негодность после длительной эксплуатации или пострадавшей от механических повреждений. Величина негативных последствий определяется не только силой тока, но и продолжительностью нагрева и особенностями схемы данной цепи. Эти ситуации носят общий характер и затрагивают в основном цепи с постоянным током.
Большинство замыканий происходит в сетях переменного тока на 220 или 380В, широко используемых на объектах жилого и промышленного назначения. В отличие от постоянного, переменному току создаются препятствия в виде дополнительных реактивных сопротивлений – индуктивного и емкостного. Они отклоняются от вектора активного тока на 90 градусов: индуктивный отстает, а емкостный ток опережает его на указанную величину.
Физические процессы и ударный ток
Понять воздействие тока можно только через физику самого процесса. На первый взгляд можно подумать, что все совершается в одно мгновение: гудение, вспышка, после чего тока в сети уже нет. Однако, если рассмотреть этот процесс с точки зрения физики и мысленно разбить его на отдельные фазы, можно заметить, что на каждом этапе ток ведет себя по-разному.
До момента возникновения аварии в цепи наблюдается стабильное установившееся значение тока, находящееся в рамках номинала. Далее происходит внезапное резкое снижение полного сопротивления до величины, стремящейся к нулю. Если в цепи находится оборудование с индуктивным сопротивлением, например, электродвигатели и трансформаторы, то они своими физическими свойствами замедляют рост электрического тока.
В связи с этим, в первое мгновение, не превышающее 0,01 с, сила тока КЗ источника напряжения практически не изменяется, и даже немного понижается в начале переходного процесса. При этом ЭДС источника постепенно доходит до нуля и пройдя через эту отметку, принимает стабильное значение, при котором может протекать высокий ток аварийного режима. На переходном этапе сам ток будет состоять из суммы, включающей периодическую и апериодическую составляющую. Все происходящие процессы можно проанализировать по форме графика и вычислить постоянное значение временной величины, зависящей от сопутствующих факторов.
Следует коротко остановиться на так называемом ударном токе короткого замыкания. Прежде всего, эта величина не столь страшная, как ее название, и не связана напрямую с поражающим фактором электрического тока. Этот показатель, прежде всего, характеризует максимальную отметку тока КЗ, до которой он доходит в течение половины периода после начала аварии. Целый период длится 0,2 с, следовательно, его половина составит 0,1 с. Именно в этот момент проявляется наибольшая интенсивность взаимодействия проводников, расположенных рядом. Для определения ударного тока существует специальная формула, широко используемая специалистами при выполнении расчетов.
Взаимосвязь короткого замыкания и силы тока
Рассмотрев физику процесса, можно с большей точностью установить взаимную связь силы тока и короткого замыкания в различных ситуациях. Любое устройство или оборудование, подключенное к источнику тока, создает ситуацию, близкую к короткому замыканию. Каждый прибор обладает сопротивлением и берет на себя всю нагрузку, за счет чего и обеспечивается его нормальная работа. Однако, при заметном снижении сопротивления, сила тока сразу же заметно возрастет. Взаимосвязь между напряжением, сопротивлением и силой тока определяется законом Ома.
Для участка цепи существует упрощенная формула, которая будет выглядеть следующим образом: I=U/R. В ней соответственно I будет силой тока, U – сетевым напряжением и R – электрическим сопротивлением. Проводники на этом участке условно имеют однородную структуру, а сама цепь дополнена резистором. Параметры источника тока в расчет не берутся.
В самом упрощенном варианте ток при КЗ можно вычислить следующим образом: Iкз = Е/r, где Е – ЭДС источника тока, r – сопротивление нагрузки. Из этой формулы хорошо видно, как при сниженном сопротивлении будет расти сила тока. Сама по себе данная ситуация не представляет какой-либо угрозы, но здесь дополнительно вступает в действие закон Джоуля-Ленца. Он указывает на выделение тепла во время течения по проводнику электрического тока и определяется не только количественной, но и временной характеристикой. Суть этого закона заключается в том, что с повышением силы тока за единицу времени будет выделено и большее количество теплоты.
Сила тока КЗ батареи
Все положения, рассмотренные выше, подходят и к случаям короткого замыкания источников питания. Типичным примером служит аккумуляторная батарея, в состав которой входит отрицательный электрод – анод и положительный – катод. Один от другого их отделяет твердый или жидкий электролит. Происходящие внутри устройства химические реакции, формируют электрический заряд, обеспечивающий работу подключенного прибора.
По сути, батарею можно считать своеобразным участком цепи, на которых распространяются все установленные правила. Следовательно, нарушенная изоляция, также приводит к короткому замыканию и последующим процессам. Многократный рост силы тока приводит к выделению тепла, под действием которого источник электроэнергии перегревается и разрушается, с одновременным закипанием и разбрызгиванием электролита.
Защита цепей и оборудования
После того как электротехника получила толчок к своему интенсивному развитию, возникла серьезная проблема по защите от короткого замыкания и его последствий. Особую актуальность она приобрела с повышением мощности электродвигателей, генераторов, осветительных приборов и другого оборудования.
Простейшим решением стала последовательная установка вместе с нагрузкой плавких одноразовых предохранителей. В случае превышения током установленного значения, выделяемое резистивное тепло воздействовало на них. В результате, предохранители разрушались, прерывали цепь и процесс короткого замыкания прекращался. Подобные элементы до сих пор пользуются спросом из-за своей надежности, простоты и низкой стоимости.
Единственным недостатком такой конструкции является возможность замены плавкой вставки различными металлическими предметами – проволокой, гвоздями или скрепками. Они обладают совершенно другими параметрами и уже неспособны защитить от перегрузок и коротких замыканий.
Ситуация совершенно изменилась, когда на смену одноразовым устройствам пришли автоматические защитные средства. Вначале они стали активно использоваться в промышленности, а потом нашли свое применение в квартирных электрощитах. Автоматика гораздо удобнее в пользовании, поскольку такие устройства не требуют замены. После устранения причин короткого замыкания тепловые элементы остывают, и прибор вновь готов к использованию. Подгоревшие контакты нежелательно чистить или ремонтировать. В случае необходимости они легко заменяются новыми.
Использование эффекта короткого замыкания на практике
Многократно увеличенная сила тока при коротком замыкании приводит к выделению большого количества тепла. Поэтому данный режим нередко вызывает возгорания, разрушения проводки, прекращение электроснабжения потребителей. Довольно часто появление электромагнитных колебаний может существенно нарушить работу чувствительной электронной аппаратуры.
Тем не менее, несмотря на множество негативных факторов, эффект короткого замыкания успешно применяется в сфере промышленного производства. Конечно, для этого необходимо обеспечить надежную защиту и безопасные условия труда для работников.
Типичным примером служит сварочная аппаратура, особенно дуговая, в которой используется принцип короткого замыкания электрода и заземления. В месте контакта сила тока кратковременно возрастает, металл приходит в расплавленное состояние, обеспечивая надежное соединение деталей. Поскольку такой режим действует в течение очень короткого времени, трансформатор вполне способен выдержать перегрузки.