В процессе эксплуатации электрические цепи постоянно замыкаются и размыкаются. Давно замечено, что в момент размыкания между контактами образуется электрическая дуга. Для ее появления вполне достаточно напряжения более 10 вольт и силы тока – свыше 0,1 ампер. При более высоких значениях тока и напряжения внутренняя температура дуги нередко достигает 3-15 тысяч градусов. Это становится основной причиной расплавленных контактов и токоведущих частей.
Если же напряжение составляет 110 киловольт и выше, в этом случае длина дуги может достичь длины более одного метра. Подобная дуга представляет серьезную опасность для лиц, работающих с мощными силовыми установками, поэтому требуется ее максимальное ограничение и быстрое гашение в любых цепях, независимо от величины напряжения.
Что такое электрическая дуга
Наиболее характерным примером является электрическая сварочная дуга, проявляющаяся в виде продолжительного электрического разряда в плазме. В свою очередь плазма – это смешанные между собой ионизированные газы и пары составляющих защитной атмосферы, основного и присадочного металла.
Таким образом, электрическая дуга это горение электрического разряда между двумя электродами, расположенными в горизонтальной плоскости. Под действием нагретых газов, стремящихся к верху, этот разряд изгибается и становится виден как дуга или арка.
Эти свойства позволили использовать дугу на практике в качестве газового проводника, с помощью которого электрическая энергия преобразуется в тепловую, создавая высокую интенсивность нагрева. Данный процесс может сравнительно легко управляться изменяющимися электрическими параметрами.
В обычных условиях газы не проводят ток. Однако, если возникают благоприятные условия, они могут быть ионизированы. Их атомы или молекулы становятся положительными или отрицательными ионами. Под действием высокой температуры и внешнего электрического поля с высокой напряженностью газы изменяются и переходят в состояние плазмы, обладающей всеми свойствами проводника.
Как образуется сварочная дуга
- Вначале между концом электрода и деталью появляется контакт, затрагивающий обе поверхности.
- Под действием тока с высокой плотностью, частицы поверхностей быстро расплавляются, образуя прослойку жидкого металла. Она постоянно увеличивается в направлении электрода, после чего наступает ее разрыв.
- В этот момент металл очень быстро испаряется и промежуток разряда начинают заполнять ионы и электроны. Приложенное напряжение заставляет их двигаться к аноду и катоду, в результате происходит возбуждение сварочной дуги.
- Начинается процесс термической ионизации, при котором положительные ионы и свободные электроны продолжают концентрироваться, газ дугового промежутка еще более ионизируется и сама дуга становится устойчивой.
- Под ее влиянием металлы заготовки и электрода расплавляются и, находясь в жидком состоянии, смешиваются между собой.
- После остывания, в этом месте образуется сварочный шов.
Гашение электрической дуги в коммутационной аппаратуре
Отключение элементов электрической цепи должно производиться очень осторожно, без повреждений коммутационной аппаратуры. Одного лишь размыкания контактов будет недостаточно, требуется правильно погасить дугу, возникающую между ними.
Процессы горения и гашения дуги существенно различаются между собой в зависимости от использования в сети постоянного или переменного тока. Если с постоянным током нет особых проблем, то при наличии переменного тока следует учитывать ряд факторов. Прежде всего, ток дуги проходит нулевую отметку на каждом полупериоде. В этот момент прекращается выделение энергии, в результате дуга самопроизвольно гаснет, и вновь загорается. На практике ток приближается к нулю еще до перехода через нулевую отметку. Это связано со снижением тока и уменьшением энергии, подводимой к дуге.
Соответственно понижается и ее температура, что вызывает прекращение термической ионизации. В самом промежутке дуги происходит интенсивная деионизация. Если в этот момент сделать быстрое размыкание и разводку контактов, то пробоя может и не случиться, цепь отключится без появления дуги.
На практике создать подобные идеальные условия очень сложно. В связи с этим были разработаны специальные мероприятия по ускоренному гашению дуги. Различные технические решения позволяют быстро охладить дуговой промежуток и снизить количество заряженных частиц. В результате, наступает постепенное увеличение электрической прочности данного промежутка и одновременный рост на нем восстанавливающего напряжения.
Обе величины находятся в зависимости между собой и влияют на зажигание дуги в очередном полупериоде. Если электрическая прочность превысит восстанавливающее напряжение, то дуга уже не загорится. В противном случае она будет устойчиво гореть.
Основные способы гашения дуги
Довольно часто используется метод удлинения дуги, когда в процессе расхождения контактов при отключении цепи происходит ее растяжение (рис.1). За счет увеличения поверхности условия охлаждения существенно улучшаются, а для поддержки горения требуется большее значение напряжения.
В другом случае общая электрическая дуга разделяется на отдельные короткие дуги (рис.2). Для этого может использоваться специальная металлическая решетка. В ее пластинах под действием вихревых токов наводится электромагнитное поле, затягивающее дугу для разделения. Данный способ широко применяется в коммутационной аппаратуре напряжением менее 1 кВ. Типичным примером являются воздушные автоматические выключатели.
Довольно эффективным считается гашение в небольших объемах, то есть, внутри дугогасительных камер. В этих устройствах имеются продольные щели, совпадающие по осям с направлением ствола дуги. В результате соприкосновения с холодными поверхностями, дуга начинает интенсивно охлаждаться, активно выделяя заряженные частицы в окружающую среду.
Использование высокого давления. В этом случае температура остается неизменной, давление возрастает, а ионизация уменьшается. В таких условиях дуга усиленно охлаждается. Для создания высокого давления используются плотно закрывающиеся камеры. Способ особенно эффективен для плавких предохранителей и другой аппаратуры.
Гашение дуги может происходить с помощью масла, куда помещаются контакты. При их размыкании появляется дуга, под действием которой масло начинает активно испаряться. Она оказывается покрыта газовым пузырем или оболочкой, состоящей на 70-80% из водорода и масляных паров. Под влиянием выделяемых газов, попадающих прямо в зону ствола, холодный и горячий газ внутри пузыря перемешивается, интенсивно охлаждая дуговой промежуток.
Другие методы гашения
Гашение электрической дуги может выполняться за счет роста ее сопротивления. Оно постепенно возрастает, а ток снижается до значения, недостаточного для поддержания горения. Основным недостатком данного метода считается продолжительное время гашения, в течение которого в дуге рассеивается большое количество энергии.
Увеличение сопротивления дуги достигается разными способами:
- Удлинение дуги, поскольку ее сопротивление находится в прямой пропорциональной зависимости с длиной. Для этого нужно изменить зазор между контактами в сторону увеличения.
- Охлаждение среды между контактами, где расположена дуга. Чаще всего применяется обдув, направляемые вдоль дуги.
- Контакты помещаются в газовую среду с низкой степенью ионизации или в вакуумную камеру. Данный метод используется в газовых и вакуумных выключателях.
- Поперечное сечение дуги можно снизить, пропуская ее через узкое отверстие или уменьшая площадь контактов.
В цепях с переменным напряжением для гашения дуги используется метод нулевого тока. В этом случае сопротивление сохраняется на низком уровне, пока значение тока не снизится до нуля. В результате, гашение происходит естественным путем, а зажигание не повторяется вновь, хотя напряжение на контактах может и увеличиться. Падение до нулевой отметки происходит в конце каждого полупериода и дуга гаснет на короткое время. Если увеличить диэлектрическую прочность промежутка между контактами, то дуга так и останется погасшей.
Последствия действия электрической дуги
Разрушительное воздействие дуги представляет серьезную опасность не только для оборудования, но и для работающих людей. При неблагоприятном стечении обстоятельств можно получить серьезные ожоги. Иногда поражение дугой заканчивается летальным исходом.
Как правило, электрическая дуга возникает в момент случайного контакта с токоведущими частями или проводниками. Под действием тока короткого замыкания плавятся провода, ионизируется воздух, создаются другие благоприятные условия для образования плазменного канала.
В настоящее время в области электротехники удалось добиться существенных положительных результатов с помощью современных защитных средств, разработанных против электрической дуги.