В электротехнике нередко возникают различные аварийные ситуации, из которых наибольшую опасность представляет короткое замыкание. В таких случаях источники напряжения начинают работать в особом режиме, вызывающем разрушения всех составляющих электрической цепи, расположенных на данном участке. Основном причиной этого явления считается прямое замыкание между собой выходных клемм генератора или аккумуляторной батареи. Вся мощь источника тока сосредотачивается в одном месте, сжигая оборудования и травмируя находящихся рядом людей.
Поэтому при работе с электрическими сетями большое значение приобретает надежная защита от короткого замыкания, осуществляемая разными способами. Ее основная функция заключается в предотвращении опасных ситуаций и локализации возможных негативных последствий.
Физические свойства данного явления
Опасность короткого замыкания напрямую связана с физическими законами, объясняющими природу этого явления. В первую очередь, это закон Ома, согласно которого ток в электрической цепи находится в прямой пропорции с напряжением и в обратной пропорции – с сопротивлением (I = U/R). То есть, при малом сопротивлении ток будет высокий, а при большом он пропорционально снижается. Кроме того, при росте напряжения одновременно возрастает и сила тока.
Сопротивление при коротком замыкании представляет собой сумму сопротивлений проводов и контактов вместе с внутренним сопротивлением источника питания. Как правило, в бытовых условиях их значения чрезвычайно малы и составляют всего лишь несколько долей Ом. Проводка домашней сети рассчитана на 16-40 ампер, тогда как в момент короткого замыкания ток может доходить до сотен, и даже тысяч ампер.
Явление КЗ тесным образом связано еще и с законом Джоуля-Ленца. Он касается количества теплоты, выделяемой на данном участке за единицу времени. Ее значение определяется квадратом силы тока умноженном на сопротивление этого участка цепи. Это означает рост выделяемого тепла проводником при повышении его сопротивления. Каждый проводник обладает собственным сопротивлением, но греются они все без исключения, но выделяют при этом разное количество тепла.
Во избежание перегрева, сечение каждого из них подбирается под определенную силу тока. В противном случае слишком тонкие проводники под высокими нагрузками становятся горячими, а провода с большим сечением практически не греются, поскольку успевают отдать тепло с большой площади в окружающую среду. Все эти физические законы и явления обязательно учитываются, когда оборудуется защита от токов короткого замыкания.
Виды коротких замыканий
Данное явление нередко наблюдается под действием природных электрических аномалий. Как правило, это мощные грозовые разряды, сопровождаемые молниями. Их основным источником служит статическое электричество с огромным потенциалом, с различными знаками и величинами, накопленное облаками в процессе перемещения силой ветра с одного места на другое на большие расстояния.
Влажные пары, находящиеся в облаке, поднимаются на высоту, охлаждаются естественным путем. Образующийся конденсат проливается на землю в виде дождя. Из-за низкого сопротивления влажной среды воздушная прослойка подвергается пробою, по которому и проходит высокий электрический ток, представляющий собой молнию.
Для прохождения электрического разряда требуется два отдельных объекта с разными значениями потенциалов. Чаще всего, это два облака, идущие на сближение, или сама грозовая туча и поверхность земли. В первом случае опасность грозит в основном летательным аппаратам, а во втором под действие разряда могут попасть любое устройство или объект, в том числе и воздушные ЛЭП. Защита обеспечивается путем установки молниеотводов, нейтрализующих грозовые разряды.
В других случаях коротким замыканиям подвергаются цепи постоянного тока. У всех аккумуляторов или выпрямителей на выходе установлены контакты с положительным и отрицательным потенциалом. В обычных условиях они поддерживают рабочий режим схемы, обеспечивая нормальную работу потребителей.
Все процессы определяются математическим выражением закона Ома для полной цепи. Происходит равномерное распределение нагрузки в обоих контурах – внутреннем и внешнем.
При возникновении аварийной ситуации, между плюсовой и минусовой клеммами возникает непредвиденный контакт в виде короткой цепи, в которой чрезвычайно низкое электрическое сопротивление. Внешний контур выключается из работы, и циркуляция тока происходит лишь по внутреннему контуру с маленьким сопротивлением. ЭДС, при этом, остается неизменной, что приводит к резкому росту силы тока. Все это сопровождается большим тепловыделением и нарушениями целостности цепи.
Процессы в цепях переменного тока также попадают под действие закона Ома. В отличие от предыдущего варианта, эти схемы могут быть одно- или трехфазными, подключаться к заземляющему контуру. Короткие замыкания в таких цепях возникают в самых разнообразных формах: «фаза-земля», «фаза-фаза», «фаза-фаза-земля», «фаза-фаза-фаза», «фаза-фаза-фаза-земля».
В воздушных ЛЭП применяются изолированная и глухозаземленная схемы подключения нейтрали. В каждой из них ток короткого замыкания будет прокладывать собственный путь, который обязательно учитывается при создании защитной системы.
Иногда замыкания могут возникнуть внутри самой нагрузки, например, в электродвигателях. При одной фазе возможен пробой изоляции корпуса или нулевого проводника. У трехфазных потребителей возможны замыкания между фазами и другие аналогичные сочетания. В любом случае все это приводит к аварийному режиму с тяжелыми последствиями. Предотвратить подобные ситуации помогает автомат снимающий опасное напряжение с участка цепи и подключенного оборудования.
Правильный выбор сечения проводов и кабелей
Основным мероприятием по защите от коротких замыканий является выбор подходящего сечения для кабелей и проводников. Следует учитывать и условия будущей эксплуатации, а также оборудование, которое планируется к подключению.
Способность проводников к работе в условиях продолжительных нагрузок целиком зависит от площади сечения жил, измеряемой в мм2. Существуют специальные таблицы, облегчающие выбор, в которых подробно расписаны показатели проводников, в соответствии с нагрузкой, учитывая электрические параметры сети.
Все проводники выбираются с некоторым запасом, поэтому в большинстве домашних сетей на освещение используются проводники 1,5 мм2, а для розеточной группы – 2,5 мм2. При необходимости выполняются индивидуальные расчеты электропроводки, исключающие перегрев и другие негативные последствия.
Следует учитывать и материал проводников. Например, сопротивление алюминия примерно в 1,8 раза превышает этот показатель у меди. То есть, при одинаковой силе тока и сечении, алюминиевая жила нагреется в 2 раза быстрее. Поэтому в современных схемах проводки используется кабельно-проводниковая продукция только с медными жилами. Алюминиевые провода используются лишь в электроустановках высокой мощности и для передачи электроэнергии по ЛЭП.
Электротехнические средства защиты
Защитить электрическую цепь от КЗ помогают различные типы предохранителей. Наиболее простыми считаются плавкие предохранители одноразового действия, различающиеся по внешнему виду. Они выступают в качестве наиболее слабого звена и в случае аварии срабатывают, разрывая цепь и защищая вверенный участок. Жертвуя собой, эти компоненты предотвращают разрушение и выход из строя других, более важных приборов от действия высоких температур, образовавшихся из-за резкого увеличения силы тока.
Плавкие предохранители для защиты от короткого замыкания выпускаются в широком ассортименте и могут работать с напряжением 600-35000В и силой тока от нескольких миллиампер до 1 тысячи ампер. Конструкция у всех одинаковая, состоит из плавкой вставки, контакта, дугогасящей среды или устройства для гашения дуги. Все элементы размещаются в общем корпусе. Срабатывание предохранителя происходит следующим образом. Вначале вставка нагревается до температуры плавления, после чего она расплавляется и испаряется. Одновременно возникает электрическая дуга, которая быстро гасится в изоляционном промежутке. После этого цепь в электроустановках оказывается полностью разорванной.
Обеспечить нормальную защиту можно лишь соблюдая определенные условия:
- Времятоковая характеристика предохранителя должна быть ниже этого показателя на защищаемом участке.
- Срабатывание происходит за минимальный промежуток времени.
- Защитный элемент должен обладать высокой отключающей способностью.
- Простая конструкция, позволяющая быстро заменить сгоревшую плавкую вставку.
Кроме одноразовых, существует автоматический предохранитель, проводящий ток в нормальном состоянии, и отключающий его в случае отклонений от нормы. Он устанавливается в начале линии и обеспечивает защиту электрооборудования от перегрузок, коротких замыканий и пониженного напряжения. Основным плюсом этих устройств считается их многоразовое использование в течение продолжительного времени.
Более серьезная защита от короткого замыкания, получившая широкое распространение, представлена автоматическим выключателем он же автомат. Все компоненты устройства помещены в корпус из диэлектрического материала. Для включения и выключения прибора предусмотрен выключатель-рычажок. Подключение проводов осуществляется через винтовые клеммы. Автомат коммутирует электрическую цепь с помощью подвижного и неподвижного контактов.
К подвижному контакту подводится пружина, обеспечивающая быстрое расцепление. Сами контакты разъединяются за счет действия электромагнитного или теплового расцепителя. Первое устройство срабатывает практически мгновенно, сердечник втягивается, когда ток превышает заданное значение. Тепловой расцепитель является биметаллической пластиной, нагревающейся под действием тока. Далее, она сгибается и производит разъединение контактов. Величина тока срабатывания устанавливается с помощью регулировочного винта.