Школа электрика


Фоторезистор: основные параметры

Содержание:

  1. Принцип действия фоторезисторов
  2. Общие характеристики
  3. Конструкция и применение
  4. Видео

В электротехнике широко применяются различные виды электрических сопротивлений. Среди них следует отметить фоторезистор, называемый также фотосопротивлением, основные параметры которого могут изменяться под действием световых лучей, попадающих на светочувствительную поверхность.

По сравнению с обычными резисторами, значение сопротивления этого устройства никак не связано с приложенным к нему напряжением. С помощью фоторезисторов определяется наличие или отсутствие света, можно проверить и измерить интенсивность светового потока. В полной темноте их сопротивление существенно возрастает и может достигнуть 1 МОм. Под влиянием света сопротивление, наоборот, начинает резко падать, а его значение будет полностью зависеть от интенсивности света.

Принцип действия фоторезисторов

В зависимости от материалов, применяемых для изготовления фоторезисторов, эти устройства разделяются на две группы, основными признаками которых являются внутренний и внешний фотоэффект.

Элементы с внутренним фотоэффектом производятся из нелегированных материалов – германия или кремния. Принцип действия их довольно простой. Попадая на поверхность устройства, фотоны приводят в движение электроны. В результате, начинается их перемещение из валентной области в зону проводимости. Далее, в материале в большом количестве появляются свободные электроны, способствуя улучшению проводимости и соответствующему уменьшению сопротивления. Это в общих чертах объясняет, как работает фоторезистор.

Достижение внешнего фотоэффекта становится возможным за счет материалов, из которых изготавливается фоторезистор. Для придания нужных свойств в них добавляются специальные примеси, известные как легирующие добавки. Они изменяют параметры в нужную сторону и способствуют созданию новой энергетической зоны, насыщенной электронами, поверх имеющейся валентной области. Такие электроны требуют гораздо меньшее количество энергии для перехода в зону проводимости. Результатом этого становится повышенная чувствительность фоторезисторов к разной длине световых волн.

Несмотря на различие физических свойств, каждое устройство обладает способностью к уменьшению сопротивления при воздействии на них светового потока. Чем выше рост интенсивности света, тем большее падение напряжения наблюдается у фоторезистора. В графическом выражении это свойство отображается в виде обратной нелинейной функции интенсивности света.

Общие характеристики

Несмотря на определенные различия в конструкции и физических свойствах, все типы фоторезисторов имеют общие характеристики. Одним из основных параметров считается чувствительность, зависящая от длины световой волны. В случае расположения длины волны за пределами рабочего диапазона, свет никак не будет влиять на устройство, то есть фоторезистор не реагирует на световые волны в данном диапазоне.

Каждый материал, применяемый для изготовления данных элементов, содержит собственные характеристики, обладает индивидуальными уникальными спектральными кривыми отклика волны по отношению к чувствительности. Например, устройства с внешним фотоэффектом лучше всего работают с большой длиной световых волн, со смещением в сторону инфракрасного сектора.

Задействовать фоторезисторы в инфракрасном диапазоне следует с осторожностью, чтобы не допустить перегрева. Получившийся тепловой эффект может оказать влияние на данные измерений в связи с изменением сопротивления элемента.

По сравнению с фото транзисторами и фотодиодами, фоторезистор обладает более низкой чувствительностью. Дело в том, что два первых устройства относятся к полупроводникам, в которых электроны и дырки, движущиеся потоком через PN-переход, управляются с помощью света. В фоторезисторах такой переход отсутствует, поэтому их характеристики не совпадают.

При стабильной интенсивности светового потока, сопротивление фоторезисторов может все равно подвергнуться существенным изменениям из-за перепадов температуры, поскольку они обладают повышенной чувствительностью к таким перепадам. В связи с этим, данное устройство нельзя использовать для точных измерений интенсивности света.

Следующее свойство, характеризующее фоторезистор, называется инертностью. Этот параметр представляет собой время задержки между изменяющимся освещением и сопротивлением, которое также изменяется при перепадах освещения. При изучении данной характеристики было установлено, что сопротивление фоторезистора падает до минимальной отметки под действием полного освещения примерно за 10 миллисекунд.

Максимального значения фоторезистор достигает при полном отсутствии света примерно за 1 секунду. В связи с этим, подобные устройства не могут использоваться в местах, где обязательно учитывается наличие резких перепадов напряжения.

Конструкция и применение

Первым материалом, у которого обнаружилось свойство фотопроводимости, стал селен. В дальнейшем такие же качества были установлены и у других материалов. Современный фоторезистор представляет собой соединение различных веществ – сульфид свинца, антимонид индия, селенид свинца. Наиболее популярны устройства, изготовленные на основе сульфида кадмия и селенида кадмия.

В качестве примера можно взять элемент из сульфида кадмия. Его изготовление осуществляется из порошкообразного вещества высокой очистки, смешанного с инертными связующими материалами. Таким образом, в будущий прибор изначально закладываются необходимые характеристики. Полученная смесь подвергается прессовке и спеканию. Далее в условиях вакуума на основание с электродами наносится специальная извилистая дорожка, представляющая собой фоточувствительный слой, реагирующий на свет. Составной частью данной схемы является пластиковая или стеклянная оболочка, защищающая фоточувствительный элемент от загрязнений и повреждений.

Сульфид кадмия реагирует на свет в соответствии со спектральной кривой, совпадающей с человеческим глазом. Максимальная чувствительность имеет длину волны, составляющую примерно 500-600 нм и входящую в видимую часть спектра.

Практическое применение фоторезисторов в системах освещения стало возможным в качестве датчиков, определяющих наличие или отсутствие света или фиксирующих степень его интенсивности. Фоторезисторы используются для работы в автоматах, включающих и выключающих уличное освещение в различное время суток. Кроме того, эти приборы применяются в фотоэкспонометрах и других устройствах, связанных с действием светового потока.



Нужен ли стабилизатор напряжения для ...
Как выбрать розетки и выключатели для...
Расчет молниезащиты
Принцип работы люминесцентной лампы

Радио- электротехника для начинающих
Ремонт квартир
Ремонт квартир в Москве
Электро схемы

***
Услуги электрика в Москве и области. Электромонтаж квартир и домов. тел. +7 909 926 36 83

Electric-220.ru © Copyright 2011 - 2018
 
Вход | Реклама | ВакансииКонфиденциальность